Topic:Monocular Visual Odometry
What is Monocular Visual Odometry? Monocular visual odometry is the process of estimating the motion of a camera using a single camera and visual features.
Papers and Code
Jan 14, 2025
Abstract:VINGS-Mono is a monocular (inertial) Gaussian Splatting (GS) SLAM framework designed for large scenes. The framework comprises four main components: VIO Front End, 2D Gaussian Map, NVS Loop Closure, and Dynamic Eraser. In the VIO Front End, RGB frames are processed through dense bundle adjustment and uncertainty estimation to extract scene geometry and poses. Based on this output, the mapping module incrementally constructs and maintains a 2D Gaussian map. Key components of the 2D Gaussian Map include a Sample-based Rasterizer, Score Manager, and Pose Refinement, which collectively improve mapping speed and localization accuracy. This enables the SLAM system to handle large-scale urban environments with up to 50 million Gaussian ellipsoids. To ensure global consistency in large-scale scenes, we design a Loop Closure module, which innovatively leverages the Novel View Synthesis (NVS) capabilities of Gaussian Splatting for loop closure detection and correction of the Gaussian map. Additionally, we propose a Dynamic Eraser to address the inevitable presence of dynamic objects in real-world outdoor scenes. Extensive evaluations in indoor and outdoor environments demonstrate that our approach achieves localization performance on par with Visual-Inertial Odometry while surpassing recent GS/NeRF SLAM methods. It also significantly outperforms all existing methods in terms of mapping and rendering quality. Furthermore, we developed a mobile app and verified that our framework can generate high-quality Gaussian maps in real time using only a smartphone camera and a low-frequency IMU sensor. To the best of our knowledge, VINGS-Mono is the first monocular Gaussian SLAM method capable of operating in outdoor environments and supporting kilometer-scale large scenes.
Via
Dec 16, 2024
Abstract:Visual odometry (VO) aims to estimate camera poses from visual inputs -- a fundamental building block for many applications such as VR/AR and robotics. This work focuses on monocular RGB VO where the input is a monocular RGB video without IMU or 3D sensors. Existing approaches lack robustness under this challenging scenario and fail to generalize to unseen data (especially outdoors); they also cannot recover metric-scale poses. We propose Robust Metric Visual Odometry (RoMeO), a novel method that resolves these issues leveraging priors from pre-trained depth models. RoMeO incorporates both monocular metric depth and multi-view stereo (MVS) models to recover metric-scale, simplify correspondence search, provide better initialization and regularize optimization. Effective strategies are proposed to inject noise during training and adaptively filter noisy depth priors, which ensure the robustness of RoMeO on in-the-wild data. As shown in Fig.1, RoMeO advances the state-of-the-art (SOTA) by a large margin across 6 diverse datasets covering both indoor and outdoor scenes. Compared to the current SOTA DPVO, RoMeO reduces the relative (align the trajectory scale with GT) and absolute trajectory errors both by >50%. The performance gain also transfers to the full SLAM pipeline (with global BA & loop closure). Code will be released upon acceptance.
Via
Nov 20, 2024
Abstract:Curriculum Learning (CL), drawing inspiration from natural learning patterns observed in humans and animals, employs a systematic approach of gradually introducing increasingly complex training data during model development. Our work applies innovative CL methodologies to address the challenging geometric problem of monocular Visual Odometry (VO) estimation, which is essential for robot navigation in constrained environments. The primary objective of our research is to push the boundaries of current state-of-the-art (SOTA) benchmarks in monocular VO by investigating various curriculum learning strategies. We enhance the end-to-end Deep-Patch-Visual Odometry (DPVO) framework through the integration of novel CL approaches, with the goal of developing more resilient models capable of maintaining high performance across challenging environments and complex motion scenarios. Our research encompasses several distinctive CL strategies. We develop methods to evaluate sample difficulty based on trajectory motion characteristics, implement sophisticated adaptive scheduling through self-paced weighted loss mechanisms, and utilize reinforcement learning agents for dynamic adjustment of training emphasis. Through comprehensive evaluation on the real-world TartanAir dataset, our Curriculum Learning-based Deep-Patch-Visual Odometry (CL-DPVO) demonstrates superior performance compared to existing SOTA methods, including both feature-based and learning-based VO approaches. The results validate the effectiveness of integrating curriculum learning principles into visual odometry systems.
* 8 pages
Via
Nov 15, 2024
Abstract:Monocular visual odometry (MVO) is vital in autonomous navigation and robotics, providing a cost-effective and flexible motion tracking solution, but the inherent scale ambiguity in monocular setups often leads to cumulative errors over time. In this paper, we present BEV-ODOM, a novel MVO framework leveraging the Bird's Eye View (BEV) Representation to address scale drift. Unlike existing approaches, BEV-ODOM integrates a depth-based perspective-view (PV) to BEV encoder, a correlation feature extraction neck, and a CNN-MLP-based decoder, enabling it to estimate motion across three degrees of freedom without the need for depth supervision or complex optimization techniques. Our framework reduces scale drift in long-term sequences and achieves accurate motion estimation across various datasets, including NCLT, Oxford, and KITTI. The results indicate that BEV-ODOM outperforms current MVO methods, demonstrating reduced scale drift and higher accuracy.
Via
Dec 04, 2024
Abstract:Making multi-camera visual SLAM systems easier to set up and more robust to the environment is always one of the focuses of vision robots. Existing monocular and binocular vision SLAM systems have narrow FoV and are fragile in textureless environments with degenerated accuracy and limited robustness. Thus multi-camera SLAM systems are gaining attention because they can provide redundancy for texture degeneration with wide FoV. However, current multi-camera SLAM systems face massive data processing pressure and elaborately designed camera configurations, leading to estimation failures for arbitrarily arranged multi-camera systems. To address these problems, we propose a generic visual odometry for arbitrarily arranged multi-cameras, which can achieve metric-scale state estimation with high flexibility in the cameras' arrangement. Specifically, we first design a learning-based feature extraction and tracking framework to shift the pressure of CPU processing of multiple video streams. Then we use the rigid constraints between cameras to estimate the metric scale poses for robust SLAM system initialization. Finally, we fuse the features of the multi-cameras in the SLAM back-end to achieve robust pose estimation and online scale optimization. Additionally, multi-camera features help improve the loop detection for pose graph optimization. Experiments on KITTI-360 and MultiCamData datasets validate the robustness of our method over arbitrarily placed cameras. Compared with other stereo and multi-camera visual SLAM systems, our method obtains higher pose estimation accuracy with better generalization ability. Our codes and online demos are available at \url{https://github.com/JunhaoWang615/MCVO}
* 8 pages, 8 figures
Via
Nov 12, 2024
Abstract:This paper introduces a cost effective localization system combining monocular visual odometry , augmented reality (AR) poses, and integrated INS-GPS data. We address monocular VO scale factor issues using AR poses and enhance accuracy with INS and GPS data, filtered through an Extended Kalman Filter . Our approach, tested using manually annotated trajectories from Google Street View, achieves an RMSE of 1.529 meters over a 1 km track. Future work will focus on real-time mobile implementation and further integration of visual-inertial odometry for robust localization. This method offers lane-level accuracy with minimal hardware, making advanced navigation more accessible.
* The copyright of this paper would be given to IEEE after "acceptance
of paper by IEEE"
Via
Sep 14, 2024
Abstract:Constructing a high-fidelity representation of the 3D scene using a monocular camera can enable a wide range of applications on mobile devices, such as micro-robots, smartphones, and AR/VR headsets. On these devices, memory is often limited in capacity and its access often dominates the consumption of compute energy. Although Gaussian Splatting (GS) allows for high-fidelity reconstruction of 3D scenes, current GS-based SLAM is not memory efficient as a large number of past images is stored to retrain Gaussians for reducing catastrophic forgetting. These images often require two-orders-of-magnitude higher memory than the map itself and thus dominate the total memory usage. In this work, we present GEVO, a GS-based monocular SLAM framework that achieves comparable fidelity as prior methods by rendering (instead of storing) them from the existing map. Novel Gaussian initialization and optimization techniques are proposed to remove artifacts from the map and delay the degradation of the rendered images over time. Across a variety of environments, GEVO achieves comparable map fidelity while reducing the memory overhead to around 58 MBs, which is up to 94x lower than prior works.
* 8 pages
Via
Oct 21, 2024
Abstract:Autonomous drone racing requires powerful perception, planning, and control and has become a benchmark and test field for autonomous, agile flight. Existing work usually assumes static race tracks with known maps, which enables offline planning of time-optimal trajectories, performing localization to the gates to reduce the drift in visual-inertial odometry (VIO) for state estimation or training learning-based methods for the particular race track and operating environment. In contrast, many real-world tasks like disaster response or delivery need to be performed in unknown and dynamic environments. To close this gap and make drone racing more robust against unseen environments and moving gates, we propose a control algorithm that does not require a race track map or VIO and uses only monocular measurements of the line of sight (LOS) to the gates. For this purpose, we adopt the law of proportional navigation (PN) to accurately fly through the gates despite gate motions or wind. We formulate the PN-informed vision-based control problem for drone racing as a constrained optimization problem and derive a closed-form optimal solution. We demonstrate through extensive simulations and real-world experiments that our method can navigate through moving gates at high speeds while being robust to different gate movements, model errors, wind, and delays.
* 7 pages, 6 figures
Via
Sep 18, 2024
Abstract:This paper presents a general refractive camera model and online co-estimation of odometry and the refractive index of unknown media. This enables operation in diverse and varying refractive fluids, given only the camera calibration in air. The refractive index is estimated online as a state variable of a monocular visual-inertial odometry framework in an iterative formulation using the proposed camera model. The method was verified on data collected using an underwater robot traversing inside a pool. The evaluations demonstrate convergence to the ideal refractive index for water despite significant perturbations in the initialization. Simultaneously, the approach enables on-par visual-inertial odometry performance in refractive media without prior knowledge of the refractive index or requirement of medium-specific camera calibration.
* Accepted at the 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2024), 8 pages
Via
Sep 14, 2024
Abstract:Enhancing visual odometry by exploiting sparse depth measurements from LiDAR is a promising solution for improving tracking accuracy of an odometry. Most existing works utilize a monocular pinhole camera, yet could suffer from poor robustness due to less available information from limited field-of-view (FOV). This paper proposes a panoramic direct LiDAR-assisted visual odometry, which fully associates the 360-degree FOV LiDAR points with the 360-degree FOV panoramic image datas. 360-degree FOV panoramic images can provide more available information, which can compensate inaccurate pose estimation caused by insufficient texture or motion blur from a single view. In addition to constraints between a specific view at different times, constraints can also be built between different views at the same moment. Experimental results on public datasets demonstrate the benefit of large FOV of our panoramic direct LiDAR-assisted visual odometry to state-of-the-art approaches.
* in submission 2024
* 6 pages, 6 figures
Via